未来几个月或者几年内,真正出现差异化的将是开发人员的生产力。对于积极地将人工智能融入到工作流程的工程师来说,这将是一个巨大的优势。原文链接:https://kadekillary.work/posts/1000x-eng/

未经授权,禁止转载!

译者 弯月

责编 王子彧

出品 CSDN(ID:CSDNnews)

几千年来,人们一直在四处寻找 10 倍速工程师。不幸的是,由于通货膨胀的影响,如今 10 倍速工程师已经不够了,我们需要更大的收益、更大的胜利、更多的代码、更多的 PR、更少的 linting 等等……因此,在这篇文章中,我将介绍如何利用 OpenAI 的 API 提供一系列命令行包装函数,大幅提升工作效率。

首先,你需要一个 OpenAI API 密钥。为此,你需要注册 OpenAI 账号(https://openai.com/blog/openai-api)。

注意,我不使用 bash 或 Mac 的 zsh。我使用的是 Fish。但实际上使用哪种命令行工具并不重要,你也可以试试看在 bash 或 zsh。

下面,我们开始。

很好,下面我们来尝试一点有用的功能。

生成的数据集在这里:

https://gist.GitHubusercontent.com/kadekillary/8c31580c6a339e476ed5b1a92b5c2875/raw/9d98452b688fd1d9feeb37551850294cc8df6580/nba.csv

显然,这里的用例非常广泛。我还尝试了另一个版本,可以读取管道的输入,但转义过程很混乱,现在写入文件和 cat 似乎更整洁了。

到目前为止,这些示例与使用 ChatGPT 获得的体验非常相似。但也存在一些差异:

1.我发现通过命令行拿 GPT 做实验更方便;

2.在其他命令中使用这些功能的能力,例如可以结合 GitHub 的 CLI 或 Jira CLI;

3.最后,你还可以链接多个调用,与使用 LangChain 等工具的感觉一样。

关于评论

评论1:只是代码写得快最多让你成为 5 倍速工程师。找几个写代码快的人很容易。

软件行业中的超高生产力是判断哪些问题需要解决。Richard Hipp 想的不是如何用 golang 订外卖,而是怎样更有效的存储数据。这并不是 ChatGPT 能解决的编程问题。如果 ChatGPT 不能完全解决这个问题,那就是很小的生产力提升, 因为最难的部分在于如何表述问题。

代码写得快,对于高效率工程师来说并不是需要解决的问题。ChatGPT 是个很棒的工具,几年之内我们也都会用它,它会改变一切。但它并不能成为经验丰富的工程师的对手。

评论2:同感,作为开发人员,我的工作是维护已有的系统,大部分工作内容都是决定哪些工作值得做、发掘或收集知识、找出修改哪些代码可以用最小的代价换取最大的成功。

许多时候还需要和客户或非技术人员讨论,判断现有功能能否满足他们的需求。

我一直在观察这次的 AI 热潮,而且一直不理解——我很怀疑,也许 GPT 可以分析成百上千个项目然后告诉我该做什么,甚至会让我把一些私有代码复制粘贴到我自己的项目中,但这并非我所愿。

也许它在编程的一小部分领域中效果不错,但同样,我并不觉得这与阅读文档并生成样板代码有什么区别。而且我对于它能改进代码也不感兴趣,毕竟让它改进代码的前提是你要提出正确的问题,而提出正确的问题才是工作中最难的部分,敲代码反而非常简单。

作者 admin